Polynomials and Polynomial Functions Algebra 2 Chapter 5

• This Slideshow was developed to accompany the textbook • Larson Algebra 2 • By Larson, R., Boswell, L., Kanold, T. D., & Stiff, L. • 2011 Holt McDougal Some examples and diagrams are taken from the textbook. Slides created by Richard Wright, Andrews Academy rwright@andrews.edu

5.1 Use Properties of Exponents

- When numbers get very big or very small, such as the mass of the sun = 5.98×10^{30} kg or the size of a cell = 1.0×10^{-6} m, we use scientific notation to write the numbers in less space than they normally would take.
- The properties of exponents will help you understand how to work with scientific notation.

5.1 Use Properties of Exponents

- What is an exponent and what does it mean?
 - A superscript on a number.
 - It tells the number of times the number is multiplied by itself.
- Example; Exponent Base

5.1 Use Properties of Exponents

- Properties of exponents $x^m \cdot x^n = x^{m+n} \rightarrow \text{product property}$ $x^2 \cdot x^2 = (xy)^m = x^m y^m \rightarrow \text{power of a product property}$
- $(2 \cdot x)^3 = (x^m)^n = x^{mn} \rightarrow \text{power of a power property}$
- $(2^3)^4 = \frac{x^m}{x^n} = x^{m-n} \rightarrow \text{quotient property}$
- $\frac{x^m}{\sqrt{m}} \rightarrow$ power of a quotient property

5.1 Use Properties of Exponents

- $x^0 = 1 \rightarrow \text{zero exponent property}$
- $x^{-m} = \frac{1}{x^m} \rightarrow$ negative exponent property
 - 2³ =
 - 2² =
 - 2¹ =
 - 2-1 =
 - 2⁻² =

5.1 Use Properties of Exponents

- $((-3)^2)^3 =$
- $(3^2x^2y)^2 =$

$$\bullet \frac{12x^5a^2}{2x^4} \cdot \frac{2a}{3a^2}$$

5.1 Use Properties of Exponents

- To multiply or divide scientific notation
 - think of the leading numbers as the coefficients and the power of 10 as the base and exponent.
- Example:
 - $\bullet 2 \times 10^2 \cdot 5 \times 10^3 =$

Homework Quiz

• 5.1 Homework Quiz

5.2 Evaluate and Graph Polynomial Functions

- Large branches of mathematics spend all their time dealing with polynomials.
- They can be used to model many complicated systems.

5.2 Evaluate and Graph Polynomial Functions

- Polynomial in one variable
 - Function that has one variable and there are powers of that variable and all the powers are positive
- $4x^3 + 2x^2 + 2x + 5$
- $100x^{1234} 25x^{345} + 2x + 1$
- 2/x
- 3xy²

Not Polynomials in one variable.

5.2 Evaluate and Graph Polynomial **Functions** Degree

- - Highest power of the variable
- What is the degree?
 - $4x^3 + 2x^2 + 2x + 5$

5.2 Evaluate and Graph Polynomial **Functions**

y = 2

- Types of Polynomial Functions
- Degree → Type
 - $0 \rightarrow Constant \rightarrow$
 - 1 → Linear → y = 2x + 1
 - 2 → Quadratic → $y = 2x^2 + x - 1$
 - 3 \rightarrow Cubic \rightarrow $y = 2x^3 + x^2 + x - 1$
 - $4 \rightarrow Quartic \rightarrow$ $y = 2x^4 + 2x^2 - 1$

5.2 Evaluate and Graph Polynomial **Functions**

- Functions
 - $f(x) = 4x^3 + 2x^2 + 2x + 5$ means that this polynomial has the name f and the variable x
 - f(x) does not mean f times x!
- Direct Substitution
 - Example: find f(3)

5.2 Evaluate and Graph Polynomial **Functions**

• Synthetic Substitution

-1

• Example: find f(2) if $f(y) = -y^6 + 4y^4 + 3y^2 + 2y$

Coefficients with placeholders 0 4 0 3 2 0 6 16 0 0 8 16

0

• f(2) = 16

5.2 Evaluate and Graph Polynomial		
Functions		
 End Behavior Polynomial functions always go towards ∞ or -∞ at either end of the grap 		
	Leading Coefficient +	Leading Coefficient -

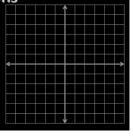
- $f(x) \rightarrow +\infty$ as $x \rightarrow -\infty$ and $f(x) \rightarrow +\infty$ as $x \rightarrow +\infty$

5.2 Evaluate and Graph Polynomial **Functions**

- Graphing polynomial functions
 - Make a table of values
 - Plot the points
 - Make sure the graph matches the appropriate end behavior

5.2 Evaluate and Graph Polynomial **Functions**

Graph $f(x) = x^3 + 2x - 4$



Homework Quiz

• 5.2 Homework Quiz

5.3 Add, Subtract, and Multiply Polynomials • Adding, subtracting, and multiplying are always good things to

- know how to do.
- Sometimes you might want to combine two or more models into one big model.

5.3 Add, Subtract, and Multiply Polynomials Adding and subtracting polynomials

- - Add or subtract the coefficients of the terms with the same
 - Called combining like terms.
- Examples:
 - \bullet $(5x^2 + x 7) + (-3x^2 6x 1)$
 - $(3x^3 + 8x^2 x 5) (5x^3 x^2 + 17)$

5.3 Add, Subtract, and Multiply **Polynomials**

- Multiplying polynomials $(x+2)(x^2+3x-4)$
 - Use the distributive property
- Examples:
 - (x-3)(x+4)

5.3 Add, Subtract, and Multiply **Polynomials**

• (x-1)(x+2)(x+3)

5.3 Add, Subtract, and Multiply Polynomials

- Special Product Patterns
 - Sum and Difference
 - $(a b)(a + b) = a^2 b^2$
 - Square of a Binomial
 - $(a \pm b)^2 = a^2 \pm 2ab + b^2$
 - Cube of a Binomial
 - $(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$

5.3 Add, Subtract, and Multiply Polynomials

• $(x + 2)^3$

• $(x-3)^2$

Homework Quiz

• 5.3 Homework Quiz

5.4 Factor and Solve Polynomial Equations

- A manufacturer of shipping cartons who needs to make cartons for a specific use often has to use special relationships between the length, width, height, and volume to find the exact dimensions of the carton.
- The dimensions can usually be found by writing and solving a polynomial equation.
- This lesson looks at how factoring can be used to solve such equations.

5.4 Factor and Solve Polynomial Equations

How to Factor

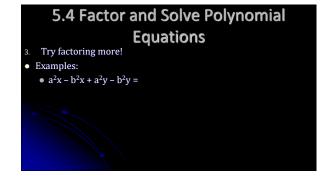
- 1. Greatest Common Factor
 - Comes from the distributive property
 - If the same number or variable is in each of the terms, you can bring the number to the front times everything that is left.
 - $3x^2y + 6xy 9xy^2 =$
 - Look for this first!

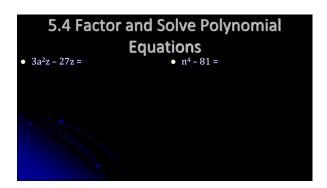
5.4 Factor and Solve Polynomial Equations

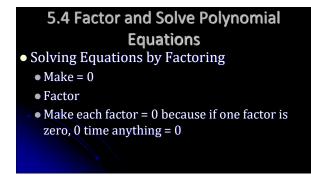
- 2. Check to see how many terms
 - Two terms
 - Difference of two squares: $a^2 b^2 = (a b)(a + b)$ • $9x^2 - y^4 =$
 - Sum of Two Cubes: $a^3 + b^3 = (a + b)(a^2 ab + b^2)$
 - $8x^3 + 27 =$
 - Difference of Two Cubes: $a^3 b^3 = (a b)(a^2 + ab + b^2)$
 - $y^3 8 =$

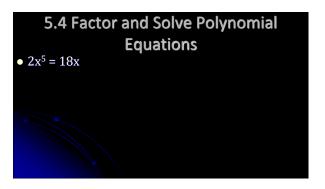
5.4 Factor and Solve Polynomial Equations • Three terms • General Trinomials → ax² + bx + c 1. Write two sets of parentheses ()() 2. Guess and Check 3. The Firsts multiply to make ax² 4. The Lasts multiply to make c 5. The Outers + Inners make bx • x² + 7x + 10 = • x² + 3x - 18 = • 6x² - 7x - 20 =

5.4 Factor and Solve Polynomial Equations Four terms Grouping Group the terms into sets of two so that you can factor a common factor out of each set Then factor the factored sets (Factor twice) b³ - 3b² - 4b + 12 =





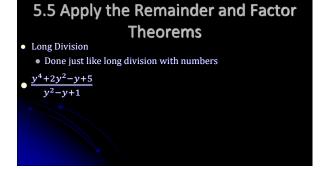




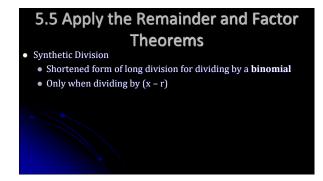
Homework Quiz • 5.4 Homework Quiz

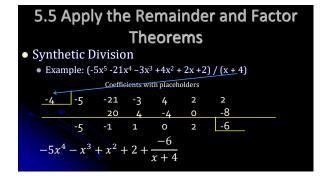
5.5 Apply the Remainder and Factor Theorems

- So far we done add, subtracting, and multiplying polynomials.
- Factoring is similar to division, but it isn't really division.
- Today we will deal with real polynomial division.









5.5 Apply the Remainder and Factor

Theorems

•
$$(2y^5 + 64)(2y + 4)^{-1}$$

•
$$y^4 - 2y^3 + 4y^2 - 8y + 16$$

5.5 Apply the Remainder and Factor Theorems

- Remainder Theorem
 - if polynomial f(x) is divided by the binomial (x a), then the remainder equals f(a).
 - Synthetic substitution
 - Example: if $f(x) = 3x^4 + 6x^3 + 2x^2 + 5x + 9$, find f(9)
 - Use synthetic division using (x 9) and see remainder.

5.5 Apply the Remainder and Factor Theorems

- The Factor Theorem
 - The binomial x a is a factor of the polynomial f(x) iff f(a) = 0

5.5 Apply the Remainder and Factor Theorems

- Using the factor theorem, you can find the factors (and zeros) of polynomials
- Simply use synthetic division using your first zero (you get these off of problem or off of the graph where they cross the x-axis)
- The polynomial answer is one degree less and is called the depressed polynomial.
- Divide the depressed polynomial by the next zero and get the next depressed polynomial.
- Continue doing this until you get to a quadratic which you can factor or use the quadratic formula to solve.

5.5 Apply the Remainder and Factor Theorems

• Show that x - 2 is a factor of $x^3 + 7x^2 + 2x - 40$. Then find the remaining factors.

Homework Quiz

• 5.5 Homework Quiz

5.6 Find Rational Zeros

- Rational Zero Theorem
 - Given a polynomial function, the rational zeros will be in the form of p/q where p is a factor of the last (or constant) term and q is the factor of the leading coefficient.

5.6 Find Rational Zeros

- List all the possible rational zeros of
- $f(x) = 2x^3 + 2x^2 3x + 9$

5.6 Find Rational Zeros

• Find all rational zeros of $f(x) = x^3 - 4x^2 - 2x + 20$

Homework Quiz

• 5.6 Homework Quiz

5.7 Apply the Fundamental Theorem of Algebra • When you are finding the zeros, how do you know when you are

- Today we will learn about how many zeros there are for each polynomial function.

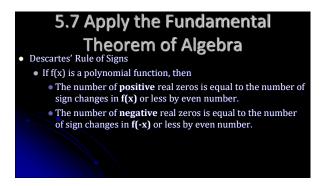
5.7 Apply the Fundamental Theorem of Algebra • Fundamental Theorem of Algebra

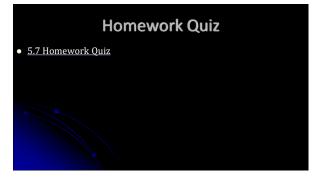
- - A polynomial function of degree greater than zero has at least one zero.
 - These zeros may be imaginary however.
 - There is the same number of zeros as there is degree you may have the same zero more than once though.
 - Example $x^2 + 6x + 9 = 0 \rightarrow (x + 3)(x + 3) = 0 \rightarrow zeros$ are -3 and -3

5.7 Apply the Fundamental Theorem of Algebra Complex Conjugate Theorem If the complex number a + bi is a zero, then a - bi is also a zero. Complex zeros come in pairs Irrational Conjugate Theorem If a + √b is a zero, then so is a - √b

5.7 Apply the Fundamental Theorem of Algebra Given a function, find the zeros of the function. f(x) = x³-7x² + 16x-10

5.7 Apply the Fundamental Theorem of Algebra • Write a polynomial function that has the given zeros. 2, 4i





5.8 Analyze Graphs of Polynomial Functions

- If we have a polynomial function, then
 - k is a zero or root
 - k is a solution of f(x) = 0
 - k is an x-intercept if k is real
 - x k is a factor

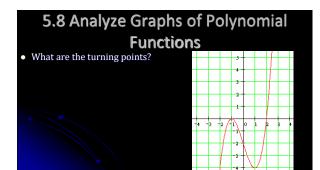
5.8 Analyze Graphs of Polynomial Functions

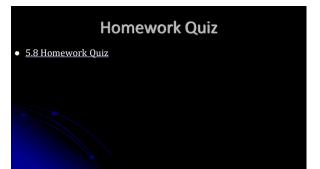
- Use x-intercepts to graph a polynomial function
- $f(x) = \frac{1}{2}(x+2)^2(x-3)$
 - since (x + 2) and (x 3) are factors of the polynomial, the xintercepts are -2 and 3
 - plot the x-intercepts
 - Create a table of values to finish plotting points around the xintercepts
 - Draw a smooth curve through the points

5.8 Analyze Graphs of Polynomial Functions • Graph f(x) = ½ (x + 2)²(x - 3)

5.8 Analyze Graphs of Polynomial Functions

- Turning Points
 - Local Maximum and minimum (turn from going up to down or down to up)
 - The graph of every polynomial function of degree n can have at most n-1 turning points.
 - If a polynomial function has n distinct real zeros, the function will have exactly n-1 turning points.
 - Calculus lets you find the turning points easily.





5.9 Write Polynomial Functions and Models

 You keep asking, "Where will I ever use this?" Well today we are going to model a few situations with polynomial functions.

5.9 Write Polynomial Functions and Models

- Writing a function from the x-intercepts and one point
 - Write the function as factors with an *a* in front
 - y = a(x p)(x q)...
 - Use the other point to find a
- Example:
 - x-intercepts are -2, 1, 3 and (0, 2)

5.9 Write Polynomial Functions and Models

- Show that the nth-order differences for the given function of degree n are nonzero and constant.
 - Find the values of the function for equally spaced intervals
 - Find the differences of the y values
 - Find the differences of the differences and repeat until all are the same value

5.9 Write Polynomial Functions and Models

• Show that the 3^{rd} order differences are constant of $f(x) = 2x^3 + x^2 + 2x + 1$

5.9 Write Polynomial Functions and Models

- Finding a model given several points
 - Find the degree of the function by finding the finite differences
 Degree = order of constant nonzero finite differences
 - Write the basic standard form functions (i.e. $f(x) = ax^3 + bx^2 + cx + d$
 - Fill in x and f(x) with the points
 - Use some method to find a, b, c, and d
 - Cramer's rule or graphing calculator using matrices or computer program

5.9 Write Polynomial Functions and Models

- Find a polynomial function to fit:
- f(1) = -2, f(2) = 2, f(3) = 12, f(4) = 28, f(5) = 50, f(6) = 78

5.9 Write Polynomial Functions and Models

- Regressions on TI Graphing Calculator
- 1. Push STAT ↓ Edit...
- 2. Clear lists, then enter x's in 1^{st} column and y's in 2^{nd}
- 3. Push STAT \rightarrow CALC \downarrow (regression of your choice)
- 4. Push ENTER twice
- 5. Read your answer

5.9 Write Polynomial Functions and Models

- Regressions using Microsoft Excel
- 1. Enter x's and y's into 2 columns
- 2. Insert X Y Scatter Chart
- 3. In Chart Tools: Layout pick Trendline → More Trendline options
- 4. Pick a Polynomial trendline and enter the degree of your function AND pick Display Equation on Chart
- 5. Click Done
- Read your answer off of the chart.

Homework Quiz • 5.9 Homework Quiz